========================== Squared Exponential Kernel ========================== .. plot:: :context: close-figs :include-source: import numpy as np import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import tensorflow_probability as tfp import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from etudes.gaussian_process import gp_sample_custom, dataframe_from_gp_samples # shortcuts tfd = tfp.distributions kernels = tfp.math.psd_kernels # constants n_features = 1 # dimensionality n_index_points = 256 # nbr of index points n_samples = 5 # nbr of GP prior samples jitter = 1e-6 kernel_cls = kernels.ExponentiatedQuadratic seed = 42 # set random seed for reproducibility random_state = np.random.RandomState(seed) # index points X_q = np.linspace(-1.0, 1.0, n_index_points).reshape(-1, n_features) # kernel specification amplitude, length_scale_inv = np.ogrid[1.5:3.6:0.5, 10.0:0.5:-1.5] length_scale = 1.0 / length_scale_inv kernel = kernel_cls(amplitude=amplitude, length_scale=length_scale) GP Prior ======== .. plot:: :context: close-figs :include-source: # instantiate Gaussian Process gp = tfd.GaussianProcess(kernel=kernel, index_points=X_q, jitter=jitter) gp_samples = gp_sample_custom(gp, n_samples, seed=seed) with tf.Session() as sess: gp_samples_arr = sess.run(gp_samples) data = dataframe_from_gp_samples(gp_samples_arr, X_q, amplitude, length_scale, n_samples) .. plot:: :context: close-figs :include-source: g = sns.relplot(x="index_point", y="function_value", hue="sample", row="amplitude", col="length_scale", height=5.0, aspect=1.0, kind="line", data=data, alpha=0.7, linewidth=3.0) g.set_titles(row_template=r"amplitude $\sigma={{{row_name:.2f}}}$", col_template=r"lengthscale $\ell={{{col_name:.3f}}}$") g.set_axis_labels(r"$x$", r"$f^{(i)}(x)$") Varying Lengthscales -------------------- .. plot:: :context: close-figs :include-source: g = sns.relplot(x="index_point", y="function_value", hue="length_scale", row="amplitude", col="sample", height=5.0, aspect=1.0, kind="line", data=data, alpha=0.7, linewidth=3.0) g.set_titles(row_template=r"amplitude $\sigma={{{row_name:.2f}}}$", col_template=r"sample {col_name}") g.set_axis_labels(r"$x$", r"$f^{(i)}(x)$") Synthetic Dataset ================= .. plot:: :context: close-figs :include-source: n_train = 12 # nbr training points in synthetic dataset observation_noise_variance = 0.1 f = lambda x: np.sin(12.0*x) + 0.66*np.cos(25.0*x) + 3.0 X = random_state.rand(n_train, n_features) - 0.5 eps = observation_noise_variance * random_state.randn(n_train, n_features) Y = np.squeeze(f(X) + eps) fig, ax = plt.subplots() ax.plot(X_q, f(X_q), label="true") ax.scatter(X, Y, marker='x', color='k', label="noisy observations") ax.legend() ax.set_xlim(-0.5, 0.5) ax.set_xlabel('$x$') ax.set_ylabel('$y$') plt.show() GP Regression Posterior Predictive ==================================