.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/gaussian_processes/plot_prior.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_gaussian_processes_plot_prior.py: Gaussian Process Prior ====================== Hello world .. GENERATED FROM PYTHON SOURCE LINES 8-16 .. code-block:: default import numpy as np import tensorflow as tf import tensorflow_probability as tfp import matplotlib.pyplot as plt .. GENERATED FROM PYTHON SOURCE LINES 18-36 .. code-block:: default # shortcuts tfd = tfp.distributions kernels = tfp.math.psd_kernels # constants num_features = 1 # dimensionality num_index_points = 256 # nbr of index points num_samples = 8 x_min, x_max = -5.0, 5.0 X_grid = np.linspace(x_min, x_max, num_index_points).reshape(-1, num_features) seed = 23 # set random seed for reproducibility random_state = np.random.RandomState(seed) kernel = kernels.ExponentiatedQuadratic() .. GENERATED FROM PYTHON SOURCE LINES 37-41 Kernel profile -------------- The exponentiated quadratic kernel is *stationary*. That is, :math:`k(x, x') = k(x, 0)` for all :math:`x, x'`. .. GENERATED FROM PYTHON SOURCE LINES 41-51 .. code-block:: default fig, ax = plt.subplots() ax.plot(X_grid, kernel.apply(X_grid, np.zeros((1, num_features)))) ax.set_xlabel(r'$x$') ax.set_ylabel(r'$k(x, 0)$') plt.show() .. image:: /auto_examples/gaussian_processes/images/sphx_glr_plot_prior_001.png :alt: plot prior :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 52-54 Kernel matrix ------------- .. GENERATED FROM PYTHON SOURCE LINES 54-65 .. code-block:: default fig, ax = plt.subplots() ax.pcolormesh(*np.broadcast_arrays(X_grid, X_grid.T), kernel.matrix(X_grid, X_grid), cmap="cividis") ax.invert_yaxis() ax.set_xlabel(r'$x$') ax.set_ylabel(r'$x$') plt.show() .. image:: /auto_examples/gaussian_processes/images/sphx_glr_plot_prior_002.png :alt: plot prior :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /usr/src/app/examples/gaussian_processes/plot_prior.py:57: MatplotlibDeprecationWarning: shading='flat' when X and Y have the same dimensions as C is deprecated since 3.3. Either specify the corners of the quadrilaterals with X and Y, or pass shading='auto', 'nearest' or 'gouraud', or set rcParams['pcolor.shading']. This will become an error two minor releases later. kernel.matrix(X_grid, X_grid), cmap="cividis") .. GENERATED FROM PYTHON SOURCE LINES 66-68 Prior samples ------------- .. GENERATED FROM PYTHON SOURCE LINES 68-71 .. code-block:: default gp = tfd.GaussianProcess(kernel=kernel, index_points=X_grid) samples = gp.sample(num_samples, seed=seed) .. GENERATED FROM PYTHON SOURCE LINES 72-82 .. code-block:: default fig, ax = plt.subplots() ax.plot(X_grid, samples.numpy().T) ax.set_xlabel(r'$x$') ax.set_ylabel(r'$f(x)$') ax.set_title(r'Draws of $f(x)$ from GP prior') plt.show() .. image:: /auto_examples/gaussian_processes/images/sphx_glr_plot_prior_003.png :alt: Draws of $f(x)$ from GP prior :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 1.068 seconds) .. _sphx_glr_download_auto_examples_gaussian_processes_plot_prior.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_prior.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_prior.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_